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Abstract 

We determine all finite-dimensional simple Lie superalgebras L such that U(L) satisfies a 
primeness criterion due to Bell. Some open problems related to primeness of enveloping algebras 
are listed. @ 1998 Elsevier Science B.V. All rights reserved. 
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1. Introduction 

This paper gives a complete account of the application of a primeness criterion, in- 

troduced in [l], to the enveloping algebras of the Cartan-type finite-dimensional simple 

Lie superalgebras over a field of characteristic zero. It brings together recent work of 

the author and others, in the papers [5-81. Combining these with the results of [l] we 

obtain the following result. 

Theorem. Let L be a finite-dimensional simple Lie superalgebra over an algebraically 

closed jeld of characteristic zero. Then L satisjes Bell’s criterion (so that U(L) is 

prime) if and only if L is not ef one qf: b(n) .for R 2 3; W(n) .for odd n 15; S(n) for 

odd n>3. 

Of the exceptions above, U(b(n)) and U(S(n)) are not semiprime. 

Those familiar with the material covered should still skim the introductory sections 

in order to fix notation. Section 2 introduces the Cartan-type Lie superalgebras, and 

Section 3 contains the main work. Section 4 contains some comments and discusses 

some open problems. 
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1. I. Lie superalgebras 

For definitions and all background, see [2,4] There is no standard notation for many 

constructions; we follow mostly the notation of [4]. 

Throughout, K denotes an algebraically closed field of characteristic zero. A Lie 
superalgebra is a .&-graded K-vector space L =L+ -j- L_ satisfying certain graded 

identities similar to those in a Lie algebra. We say L is consistently Z-graded if L has 

a Z-grading L=enEZ L, as an algebra such that L+ = C, Lz,,, L_= C,, Lz,,+l. 
The finite-dimensional simple Lie superalgebras over K were classified in [2]. There 

are two essentially different kinds of simple algebras. The classical algebras are those 

for which L+ is reductive, or alternatively those for which L_ is a completely reducible 

L+-module. The others belong to the four infinite families of algebras of Cartan type. 

1.2. Primeness of enveloping algebras 

The enveloping algebra of a Lie algebra is always a domain and hence prime. The 

usual proof is via a “filtered-graded” argument, with the standard (PBW) filtration of 

U(L) being used. The direct analogue for Lie superalgebras fails since the associated 

graded ring is no longer prime. By using a different filtration, Allen Bell [l] showed 

that if L is a finite-dimensional Lie superalgebra over a field of characteristic zero, then 

the primeness of the universal enveloping algebra U(L) is implied by the nonsingularity 

of the symmetric product matrix ([fi, fj]). Here {fi,. . . , fs} is a basis for the odd part 

L- of L, and the matrix is defined over the polynomial algebra S(L+). The condition 

is independent of which basis is chosen - it simply expresses the nonsingularity of a 

certain bilinear form. 

Bell showed that his result applied to all of the classical simple Lie superalgebras 

except those of the family b(n). The enveloping algebra of this outstanding case was 

shown not to be prime by a direct argument. An obvious next step is to consider the 

simple superalgebras of Cartan type. In [5-S], the author (with the assistance of G. 

Pritchard and D.H. Wood) has determined whether or not Bell’s criterion applies to 

these algebras. Since the answer is negative in some cases, and yet no information 

on whether Bell’s criterion is necessary for primeness has so far been unearthed, the 

primeness or otherwise of the enveloping algebra of certain Cartan-type algebras still 

remains open. 

Note that if E is a subfield of K then L @E K is a Lie superalgebra over K which 

satisfies Bell’s criterion if and only if L does. Thus, we are simultaneously checking 

Bell’s criterion for all forms of the algebras considered here. 

2. The Cartan-type Lie superalgebras 

The Cartan-type simple (infinite-dimensional) Lie algebras all arise as subalgebras 

of the algebra of derivations of a finitely generated polynomial algebra. The analogue 
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of a polynomial algebra in the superalgebra case is a Grassmann algebra (both are 

enveloping algebras of abelian Lie superalgebras). Since this is finite-dimensional so 

are all our Cartan-type Lie superalgebras. 

Let n 2 1 be an integer and let V be an n-dimensional vector space over K. The 

Grassmann algebra ,4 = A( V) is the free anticommutative associative algebra on I’, 

generated by V subject to the defining relations uw + wu = 0 for a, w E V. One can also 

interpret A as the universal enveloping algebra of the odd abelian Lie superalgebra V. 

It has a consistent Z-grading A = @F=, A,. where A, = V’. 

Let N={l,...,n} and fix a basis {Q)~EN} of V. Given a subset 1 of N, order 

I as iI<... < i, and form the element of= u;, . . ui,. The set of all such VI, each I 

ordered arbitrarily, forms a basis for A, where we use the convention us = 1. Thus, 

The standard basis construction for A, that obtained from the PBW theorem, is to take 

all monomials VI where I inherits its order from N. Of course, the basis elements 

corresponding to a given I can differ only by a factor of f 1 no matter which ordering 

is used. 

The anticommutativity of A yields the obvious formula 

2.1. W(n) 

Take V=K” with standard basis uI, . . . , u, and let W = IV(n) = D(A), the Lie super- 

algebra of superderivations of A. Then W is a graded subspace of the graded algebra 

EndK(A) and multiplication for homogeneous elements is given in the usual way by 

the supercommutator 

P1,41= 
C 

DID~ - 0201 if DI or 02 is even, 

0102 + 0201 if D1 and D2 are odd. 

The Z-grading on W is consistent. Here, the graded component W,. consists of all 

superderivations which map V = AI into A,.+i, so we have 

n-1 

w= @ w,. 
?=-I 

Every element of W maps V into A and since it is a superderivation it is completely 

determined by its action on the generating subspace V. It follows that W can be 

identified with A @K V’ as a vector space. Thus, every element of W can be expressed 

as xi Aidi where di is the odd superderivation a/hi. In particular, for any ordering of 

the elements of the subsets I, the set of all uzdi forms a basis for W. 
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The tensor product of bases for /1 and V* of course provides a basis for n @K V*. We 

shall use a different basis in which the two tensor factors are not chosen independently. 

Let { ai,. . . , v,} be a basis for V. Then we form a basis for IV, as follows. 

For a pair (Z, i) with (II = rf 1, there are two possibilities. If i $! I say that (I, i) is of 

type (1,r). We order I naturally as a subset of N. The span of the us& thus obtained 

is denoted Wj”. If i E I then say that (I, i) is of type (II, r). We write I =I’ U {i} 

where I’ is ordered in the natural way as a subset of N and we decree that I’ < i, so 

that i is the last element of I. The span of the u,d; thus obtained is denoted W,‘*‘. It 

follows that 

dimW(‘)=(n-u- 1) I 

The multiplication formula for odd elements is 

[U,f3i, UJdj] = Z1[di(UJ)dj 

Note that it is immediate 

both i 4 J and j $! I hold. 

2.2. S(n) and s(n) 

+ U,Jdj(V~)di. (2) 

from this formula that the product is zero if (I n J1 > 2 or 

Every element of W(n) can be uniquely expressed as c:=, J-id, where J.i E n(n). 

The kernel of the divergence mapping cy=, lidi ++ EYE, ai is a simple subalgebra 

of w(n) called S(n), which we often write as simply S. 

S inherits a consistent Z-grading 

n-2 

s= @ s,. 

A spanning set for each S, is as follows and contains two distinct types of ele- 

ments. Those basis elements of type (I, Y) are all those of the form u,ai with i 6 I and 

(II = r+l. Those of type (II, r) are of the form DAhij where i, j $?A and IAl = r. Here 

h, = UIc7i - t>8jii. The type-1 elements are all linearly independent, and their span Sj” 

is independent of the span Sj2) of the type-11 elements. 

The type-II elements are not independent however, since hij + hjk = hik. We reduce 

the set of type-11 elements to a basis for Si2’ as follows. For each A with IAl = Y, order 

the complement B = N\A in the natural way as a subset of N and let i be the first 

element of B. Select those elements of the form aA h<j where i <j E B. These are easily 

seen to be independent and span Ss”. The proof is the same as the proof that the 

standard basis for the Lie algebra s/(n) is indeed a basis. In fact, as the restriction of 
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the isomorphism We G yl(n) carries SO onto sZ(n), that situation is covered here. Under 

this last isomorphism the type-(LO) basis elements ~~8, correspond to the off-diagonal 

matrix units eij and the type-(II, 0) basis elements hlj to the diagonal elements eir -ejj. 

We have 

dimS(‘)=(n -r - 1) r 

dimS!2)=(,-,- 1) ’ , 
0 r ’ 

dimS,=(n-r-1) 

When n is even, the closely related algebra S(n) is defined as follows. For - 1 KY 5 

n - 2, 5, =S,. Also S-1 is spanned by all (1 + UN)di. Then S(n) is a simple Lie 

superalgebra not isomorphic to any S(m). It does not inherit a consistent Z-grading 

from W. 

2.3. H(n) and l?(n) 

The subspace of S(n) spanned by all superderivations of the form 

where ,% E A, is a Lie superalgebra called & = k(n). g inherits a consistent Z-grading 

from W and we have 

n-2 

I?= @I’. 

r=-I 

The subalgebra H = H(n) = @:r’, H, = [g, f?] is a simple Lie superalgebra. 

The homogeneous component H, is isomorphic as a vector space (in fact, as an HO- 

module) to A,.+2 via DA H I,, and so the derivations XI = D,,, , where 0 # I C N, form a 

basis for I?. Thus, 

Under the isomorphism WO E g/(n) the Dr(,,,l are mapped to the standard basis elements 

cj, - eij for Ho g SO(U). 
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3. Application of Bell’s criterion 

3.1. Generalities 

For most of the classical simple Lie superalgebras, the weight space decomposition 

with respect to a Cartan subalgebra of L+ has several nice properties. In particular, if 

1 is a weight then so is -1 and the associated weight spaces have the same dimension. 

This fails to hold for the algebras of Cartan type, and so the arguments in [l] cannot 

be used. 

The methods used below to show nonsingularity of the product matrix are var- 

ied. Essentially, we repeatedly combine specializations with block decompositions. The 

block decompositions arise sometimes from algebra gradings and sometimes from de- 

composition of the associated graph (see below). Most of the Cartan-type algebras 

have Z-gradings with finite support, which yields a block structure to their product 

matrices. A further grading is obtained by considering the weight space decomposition 

of L considered as an LO-module. 

In every case the weight spaces corresponding to the highest even weights prove to 

be crucial. I have not found a satisfactory unified proof using this approach however, 

and so this remains a heuristic argument. The methods for showing singularity are even 

less systematic. In the case of S(n) for n odd the zero pattern itself forces the product 

matrix to be singular, whereas for W(n) with n odd more subtle (and interesting) 

methods are required. 

The following elementary observation is used below. Let A4 be a matrix with block 

form 

where B has more columns than rows. Then M is singular - in fact, every term in 

the full expansion of the determinant is zero. The proof of the following proposition 

is immediate using this observation if we choose homogeneous bases for L ordered in 

the obvious way. 

Proposition 1. Let L = @y=_, Li be a jkite-dimensional H-graded Lie superalgebra. 

(1) Suppose that m is odd. Then a product matrix for L has the form 

L-I,_, L-l,] . . . . . . L-1,m 

L,,_l 0 . . . 0 0 

(a) udim L, = dim& whenever a+ b = m - 1 then L satisfies Bell’s criterion if 

and only if the product submatrices L& for such a and b are nonsingular. 

(b) If dim L_ 1 <dim L, then L does not satisfy Bell’s criterion. 
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(2) Suppose that m is even. Then a product matrix for L has the form 

L-1,-1 b-i-1.1 ... 

Thus, if dimL_1 + dim LI <dim L,_l then L does not satisfy Bell’s criterion. 

Unfortunately, the last line of case (2) does not apply to any of the Cartan-type 

algebras. 

Another technique we use is to recast the problem in graph-theoretic language. Given 

a symmetric matrix M, there is a naturally associated graph G(M) defined as follows. 

G(M) has vertices labelled by the row indices and an edge from i to j if and only if the 

entry Mjj # 0. In other words, if we replace all nonzero elements of A4 by l’s then the 

resulting matrix is the adjacency matrix of G(M). Finding a direct sum decomposition 

of M is equivalent in an obvious way to decomposing G(M) into disjoint subgraphs. 

When M results from a product matrix by specialization we shall say therefore that 

basis elements x, y are linked if the associated vertices are joined by an edge, i.e. 

[x, y] # 0. Often our basis elements are parametrized and we shall say that in this 

situation the relevant parameters are linked. 

The following technical lemma will prove useful later. Here, AAB denotes the sym- 

metric difference (A u B)\(A n B). 

Lemma 1. Let N be a jinite set of even size n. Let X = {xs ) 0 c S c N} be a set 
of algebraically independent variables over Zz. Let Y and s be odd positive integers 

with r + s = n. Then the matrix with rows indexed by all XI with II 1 = r and columns 
indexed by all xJ with 1 J / = s, defined by 

MIJ = 
XIAJ, 11 n$ = 1, 

0, othenvise 

is nonsingular over Z&Y). 

Proof. The matrix M is square, since it has dimensions (r) x (i). Note that if l1fl.J = 1 

then IldJ( = n - 2. Thus, we may label the variables occurring in A4 by their ordered 

2-element complements, for example ~13 = XN\{ 1,3). 

We now make the specialization which sends yji to 0 unless j - i = n/2, and call 

the n/2 remaining variables zt = yr 1 I,. . . , Z,Q. For each i, let i’ = i + n/2 (mod n). Note 

that (i’)’ = i and Zi = zir. The image of M under this specialization is a matrix whose 

only possibilities for nonzero entries are fzi for some i. 

We shall obtain a block decomposition of A4 by decomposing the graph G(M). If 

for simplicity we label the vertex corresponding to XI by I, there is an edge in G 

joining I to J if and only if [xI,xJ] = f zj for some i. This of course is equivalent 
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to the condition IAJ = {i, i’}. We shall say that in this case I and J are joined by an 

edge of colour i. 
Fix i E N. It follows easily from the definition of A4 that there is an edge of colour 

i joining / and J if and only if II) + 1 JI = n, one of i or i’ belongs to both I and J 

and the other belongs to neither. Furthermore, for a given I # N, there is at most one 

edge of a given colour at the vertex 1. Also there is at least one edge of some colour 

at the vertex I, since for some i we have i E I and i’ @ I. 
We now obtain the promised block decomposition of M by showing that the set of 

colours occurring at a given vertex of G(M) is constant on each component. To this 

end, we first show that vertices distance 2 apart have the same colours. Suppose that 

I and J are linked by an edge of colour i. Then without loss of generality I II J = {i} 

and I U J = N\{ i’}. Let K be linked to J. If J and K are linked by an edge of colour 

j then either {i, i’} = {j,j’}, in which case K = I, or {i, i’} 0 { j.j’} = 0. In the latter 

case we can assume JnK={j} and JUK=N\{j’}. Thus i’EK since i’EJUK 

but i’$J. LetX=JU{i’,j’}\{i,j}. Then IXI=JJI, KflX={i’},KUX=N\{i} and 

so K and X are linked by an edge of colour i. Thus, every colour occurring at I also 

occurs at K, and by symmetry Z and K have the same colours. 

It follows that if I and J are linked by an edge then they have the same colours, 

since if an edge of some colour i joins I and L, then J and L have the same colours and 

so the colour i occurs at J. By induction on the length of a path joining two vertices, 

the set of colours occurring at a vertex is constant on components. This decomposes 

G(M) into a union of disjoint subgraphs, each corresponding to a given set of colours. 

Now fix a block corresponding to a given set of colours. This matrix is such that 

in every row and column, each variable which is present occurs exactly once, perhaps 

with a minus sign. Then specializing all but one of these variables to zero we obtain 

a nonsingular monomial matrix. 0 

3.2. W(n) 

We record here for later use some obvious but useful formulae. Here, p(Z,i) denotes 

the position of the integer i in the ordered set I: 

(4) 

C-1) l+P(Li)~i~~l,fll = aI = (-l)l’I-P(f,i)u,\~i)ui if i EZ. (5) 

3.2.1. n even 

Theorem 2. Let n > 4 be even. Then W(n) satisjies Bell’s criterion and hence U( W(n)) 
is prime. 
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Proof. Fix odd Y,S with - 1 5 r, s 5 n - 1 and r + s = n - 2. Each block W,,,y is square: 

dimW,= (r;l) = (r;l) =dimW, if r+s=n-2, 

so by Proposition 1 it suffices to show that each such block is nonsingular. 

We first make the specialization which sends all type-(II,n - 2) variables u,di to 

zero. The remaining n variables are ?ck = rN\{k}ak, and we specialize all these to 1. Let 

M denote the resulting matrix; it suffices to prove that M is nonsingular. 

We now calculate explicitly conditions on (Z,i) and (J,j) which are equivalent to 

their being linked under this specialization. 

The product in (2) is nonzero in W only if i E J or j E Z. Also it is clear that for 

the product to remain nonzero under our specialization it must lie in the span of xi 

and x,. 

First suppose that i = j. The first term on the right-hand side in the odd product 

formula (2) remains nonzero under our specialization if and only if i EJ and Z U 

(J\{i})=N\{i}. S’ mce 111 + IJl =n, this is equivalent to Z n J = 0 and Z U J =,‘v. 

Thus i 6 Z. Similarly, if the second term remains nonzero then i E Z, i $! J, Z n J = 0 

and Z U J = N. Hence, at most one term on the right-hand side of (2) remains nonzero, 

and the corresponding entry equals i 1. 

Now suppose that i #j. The first term in (2) remains nonzero if and only if i E J and 

Z U (J\(i)) = N\(j). This is equivalent to the conditions Z f’J = {i}, Z U J = N\(j). 

Similarly the second term remains nonzero if and only if j E I, Z n J = {j}, Z U 

J = N\(i). Note that again both terms cannot remain nonzero simultaneously and so 

the product in (2) specializes to 0 or f 1. 

Thus (I, i) and (J,j) are linked if and only if exactly one of the following conditions 

is satisfied: 

1. iEZ, j$J, Z\(i) and J U {j} are mutually complementary in N, 

2. i@Z, jEJ, ZU{i} and J\(j) are mutually complementary in N. 

In each case the corresponding entry in A4 is just fl. 

We now determine the components of G(M) and thereby obtain a further block 

decomposition. 

If Y = - 1 then all the (Z, i) are of type-I, and if Y = n - 1 all are of type-II. Otherwise 

both types of variables occur. Now variables of the same type are not linked, and so 

for 1 5 Y < n - 3 the matrix M is, up to a reordering of rows and columns, the direct 

sum of two blocks. Furthermore, these blocks are square because 

dim W,!“=(n-r- 1) (r;l) =(~+l)(~;~) =dimJY,(‘). 

The symmetry of the product matrix means that we need only consider the blocks 

formed by the product of type-1 by type-II variables, so we assume - 1 5 r 5 n - 3. 

We show that each such block 441 is nonsingular, from which the theorem follows. 

If (I, i) is of type (I, r) then by the above A = Z U { i} has size r +2, and B = N\A has 

size s. Conversely, given mutually complementary A and B with respective sizes r + 2 
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and s, let i and j be elements of A. Then (A\(i), i) and (B U {j}, j) are linked and of 

type (I, Y) and (II,s), respectively. It follows that each component of G(M) consists 

of all the (Z,i) and (.Z,j) determined by a given A. Thus, after reordering rows and 

columns if necessary, each Mt can be taken to be block diagonal, where the blocks 

have size r + 2 and each block has every entry either 1 or - 1. 

Now we fix such a diagonal block X of size Y + 2. It suffices to prove that X is 

nonsingular. We first compute the entries of X. 

For each A, [VA\idi, VBVi8i] = - UA\ingdi, whereas for j # i we have [nA\iai, VBnjaj] = 

nBVA\iai = UA\iUgdi. Thus, by reordering the rows or CO~UIIUIS of X and multiplying 

columns or rows by - 1 if necessary, we can arrange so that the only - 1 entries occur 

along the leading diagonal and the other entries are all 1, i.e. X can be taken to be 

-1 

1 L 1 

-1 

1 

1 

4 

. . 

-1 

Now it is well known (and straightforward to show) that such a matrix is nonsingular if 

its dimension is not 2 x 2. Since r # 0 (it is odd), X is nonsingular, and this concludes 

the proof. 0 

3.2.2. n odd 
Case (2) of Proposition 1 applies here. Unfortunately, since dim W- 1-t dim WI = n + 

n2(n - 1)/2 > n2 = dim W,_ 1 the last sentence there does not apply. We shall first esti- 

mate the rank of each block W,, with T+S = II- 1. Note that necessarily 1 5 r, s < n-2. 

The component Wn_, has basis consisting of all Zk = i&ak with k E N, so every 

nonzero entry in W,,, is a linear combination of the zk. 

LetZ,JCN with (Z]=r+l,IJJ=n-r. W e now obtain conditions for (I, i) and (.Z, j) 

to be linked. It follows from 2 that a necessary condition for linking is that Z flJ = {i} 

or I n J = {j}. These two possibilities are in fact mutually exclusive, since 

[D,ai, UJai] = 0 if 111 and IJI are even and Z n J = {i}. 

To see this, we compute 

(6) 

= 0. 

In summary, (Z,i) and (J,j) are linked if and only if i # j and either Z fl J = {i} or 

Z n J = {j}. The corresponding entry in A4 equals fZk for some k E N. 
We analyse the two types of variables separately. 
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If (Z,i) is of type (I,r), then (I, i) links to (J,j) if and only if (J,j) is of type 

(II, s), and Z nJ = {j}. For each j E I there is exactly one such J and in fact we 

have vJaj = vN\lvj’iaj by our basis convention. Thus, the corresponding entry in the 

product matrix is vN\,vISi. Note that this is independent of J and j and so a row 

indexed by such a pair (Z, i) has precisely (I( nonzero entries all of which are the 

same. Furthermore, for a fixed Z the nonzero entries occur in the same columns for 

all i. 

If (Z,i) is of type (11,~) then there are three subcases. 

l Z nJ = {j}: We have v,,aj = vN\rvjaJ and vlaj = v,\~i)viai and so the entry in the 

product matrix is vN\Ivl\lilvidi. 

l Z nJ = {i}, j E J: Here v,ai = v,y\Jvii?i and the corresponding entry is vN\JvJ\IJ)vjdj. 

l Z n J = {i},j $ J: Here the corresponding entry is vN\JvJdj. 

We now estimate the rank of each block W,,,. 

Lemma 3. The rank of W,, is at most (r,‘;). 

Proof. Fix A C N with (Al = r. For a fixed k E B = N\A, consider the submatrix Sk 

of W,, formed by all rows indexed by pairs (A U {k},i) as i ranges over B. By the 

analysis above, the columns which correspond to the nonzero entries in & are indexed 

by pairs of the four types 

1. (B,j), jEA, 

2. (B, k), 

3. (B,j), j 6 B\(k), 

4. (B\(k) U {j>,j), j EA. 
Let F be the function field =K(zi,. . .,z,,). The rows where if k span a one- 

dimensional F-subspace. Thus, using suitable row operations over F we may assume 

that such rows contain only l’s and 0’s. Furthermore, the l’s occur precisely in the 

columns of the second and fourth types above. 

We now compute the remaining entries of Sk, namely those in the row with i = k. 

For the columns of the first type, case (iii) above applies and the entry is vAvgdj. This 

is equal to ~(A)zj where E(A) = f 1. For the column of the second type the entry is of 

course zero by Eq. (6). For the columns of the third type, case (ii) above applies and 

the entry is vAvs\(jlvjaj. This can be rewritten as (-1) lel-J’(BJ)vAvsaj and this is equal 

to (-l)p’B3j)vAvBa, since IBI = n - 1 - Y is even. We can write this as &(A, j)zj where 

&(A, j) = f 1. Finally, for columns of the fourth type, case (i) applies. The corresponding 

entry is vB\{k) vAvk&. This simplifies to vAvkvB\{k)& by anticommutativity and this can 

further be rewritten as (- 1 )l+p(B.k) uAuBiik. In terms of the notation of the previous case 

this is equal to --E(A,k)Zk. 
Thus & may be represented as in Table 1. Here, to save space we write Bk = B\(k) 

and By = (B\(k)) U {j}. 

The first row of the table represents one row of Sk whereas the second row represents 

s rows. Similarly, each column of the table may represent many columns of Sk. 
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Table 1 

i=k &(A )zj 0 E(A,j)Zj --EV,k)zk 

i#k 0 I 0 I 

Table 2 

(B, A,i EA (B, jM E B (Bkj.j),j EA 

i=k HA )zj E(A,j)Zj 0 

ifk 0 dkj 1 

By adding &(A, k)zk times any of the rows with i # k to the row with i = k we 

convert Sk to a matrix which may be represented as in Table 2. 

In particular, note that if we keep A fixed and perform the above procedure for each 

k E B in turn, all the rows with i = k are now identical, so form a rank 1 submatrix. 

Now allow A to vary. Each row of W,, which is indexed by some (I,i) of type 

(11,~) appears precisely once in the above construction. Thus the total contribution to 

the rank of W,,, by such rows is at most equal to the number of A, namely (y). The 

total contribution to the rank by rows of type (I, r) is at most equal to (, 4 ,). Thus, 

W,,, has rank at most (r) + (,.it) = (z$). 0 

The main result follows directly: 

Theorem 4. Zf n is odd, W(n) satisfies Bell’s criterion only for n = 3. 

Proof. The case n = 1 is trivial and the associated 1 x 1 product matrix is zero. Now 

assume that n 2 3. The submatrix W.,n_2 (the rightmost “column” of the product matrix) 

consists of two nonzero blocks and has dimensions (n2”-‘) x n2. It follows from 

Lemma 3 that the rank of W.,,_z is at most n + (“l ‘) = n(n + 3)/2. Thus, the rank of 

the product matrix for W(n) is at most n2”-’ - n2 + n(n + 3)/2 = n2”-’ - n(n - 3)/2. 
For n 2 5 this is strictly less than n2”-‘. 

When n = 3 the bound above does not show singularity since it equals the size of 

the product matrix. In fact, it is easy to show (by the row operations above) that in 

this case the matrix is nonsingular. This yields the result. 0 

3.3. S(n) and g(n) 

Proposition 1 does not apply here. The highest degree occurring is n - 2 and yet 

if r+s=n - 2 then dimS,=(s+l)(:I:) and dimS,=(r+l)(~~~), these two 
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dimensions being unequal in general. Thus, even to obtain a first decomposition we 

need to work harder. 

We shall not need the Ml details of how to multiply odd basis elements, but we 

now treat the necessary cases. 

Using Eq. (2) we see that for the product of odd type-1 elements we have 

I fv(I”J,\{i}aj? iEJ and j$I, 

fv(lU.J)\{ j}ai2 jEI and i$J, 

*U(I “,)\{,j}hj, i E J and j EL 

i$J and j$I. 

The third case follows from the following computation, where I’ = Z\(j), J’ = J\(i): 

[vI&uJq = C-1) *+P(~i)uIuJ,aj + (-1 )l+P(WuJvI,ai 

= (__l)l+p(J,O+ III-p(Lj) U~~VjUJfaj 

+(-I) 
l+pKj)+ IJI-_p(J,i) UJrUiUrfai 

= (-1 )l+pW)+ IPI-NJ)+ IJl-1 UI~ UJ~ Vjaj 

+(_~)~+~(~.i)+lJI-_p(J,i)+l~l--1~~,~~,~.~. I I 

= (_l)Nd+ IJI--P(J,i)+ I~l[v,,vJ,Ujaj 

=(_ly(Li)+p(J,i)+I UIj uJ/ h,. 

The last two equalities use the fact that (11 and 1 Jl 

_ UIrU_rtUiai] 

are even. 

The product of a type-1 and a type-II element leads to several cases, which can be 

summarized below. 

[vdi, vBh1 = 

0, i4BU{~,~},I{~,~}~~l~{O,2}, 

fw&L i~BU{k,Z},~{k,Z}~Z~=l, 

fuIuB\{i)hkl, iEB, 1(&l) nrl E {0,2), 

fuIu,\{ilhij, iEB, je&{4j)=={k~), 

fUIUB& {hi} = {k Z>, j @ 4 

l 2vfvgai, (i,j} = {k, I}, j E I. 

(8) 

The computations are straightforward, using the fact that I is even and IBI is odd. 

We give details for the 4th and 6th cases. For the first of these, suppose without loss 
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of generality that k E I and 14 I. Then 

= (-1 )l+Nvd 
Qb\{i} [vi& - di 

For the second suppose without loss of generality that i = k and 1 E I. Then 

= (-1)‘B’ uIuBa, - VBoIdi 

= -2v1vgdj. 

For a pair of type-II elements we note that hii is either &us if precisely one of i, j 

belongs to B, and zero otherwise. Since [h,, hkl] = 0, the product [UAhu, UBhkl] is equal 

to UAhij(UB)hkl+ Vghkj(Ug)hij and hence lies in the span of UAuehij and ZiAVBhk/. Thus, 

the subspace S2) = C,.Sj2’ is a subalgebra. 

The multiplication in S(n) differs little from that in S(n). If uJdj has degree at least 

1 then IJ n N] > 2 and so [( 1 + UN)&, uJaj] = [ai, uJa,], while [( 1 + UN)&, (1 + uv)di] = 

&(vN )aj + aj(oN)&. Thus, the only difference in a product matrix for S(n) and one for 

S(n) is in the submatrix formed by the products of elements of degree -1. 

3.3.1. n even 

Theorem 5. Let n > 4 be even. Then S(n) and s(n) satisfy Bell’s criterion. 

Proof. Write n = 2m. We first treat the case of S(2m) as the other case follows quickly 

from this. We make the specialization which sets all even type-II variables to zero. 

By the above the product of two type-II elements is in the span of type-II elements 

and hence specializes to zero. 

Type-I elements (I,i) and (J,j) are linked if and only if II/+ IJI <2m, ZnJ =8 

and either i E J or j E I. 

The product of a type-1 element ul& and a type-II element vBhk[ remains nonzero 

only if ]I]+ lBI 5 2m - 1 and I Ti B = 8. 

We obtain a (nonobvious) block decomposition of a product matrix M as follows. 

For each a with 0 5 a 5 m- 1 define M, to be the span of all variables of type (I, 2a- 1) 

and all variables of type (II, 2a + 1). It follows from the linking conditions above that 
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[M,,Mb] = 0 unless a + b 5 m - 1. Thus, A4 has the reverse block upper triangular form 

Furthermore, the blocks Mab on the reverse diagonal, i.e. the ones with a + b = m - 1, 

are square: 

dim M, = 

= (2)(2b+2)+ (2z;l)(2b) 

(2m)! 

= (2a+ 1)!(2b+ l)!(2b+1 +2a) 

= (320+2)+ (2/2;l)(24 

= dim&. 

Thus, it suffices to show that all such blocks Mab with a + b = m - 1 are nonsingular. 

Note that the (- 1, - 1) product submatrix does not occur on the reverse diagonal and 

so we will dispose of both S and 5 with the same argument. 

Now fix such a a and b and consider the block Mab. Clearly, Mab has a 2 x 2 block 

form 

XY ( ) zo 

corresponding to the division of M, and Mb into type-1 and type-II variables. 

We shall compute the rank of Mab in stages. First note that in Y and Z the only 

nonzero entries occur when the last case of Eq. (8) holds. This is because IBI + 111 = 

2m - 1 and B and I are disjoint, so one of k, 1 must belong to I. In fact if we 

define z; = UN\{i}ai for 1 5 i 5 2m then the only nonzero entries in Y and Z have the 

form *2zi for some i. Furthermore the linking conditions can be expressed as follows. 

Choose a subset A of N of size 2k+ 1. Then (A\{i},i) is linked to (B,{k, I}) if and 

only if AnB=@, AUB=N and iE{k,l}. 
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We first make the further specialization of all Zi H i. Then the nonzero entries 

of Y and Z are all f 1. Note that the variables occurring in X are all algebraically 

independent of the zi and so X remains unchanged by this specialization. Furthermore, 

the linking conditions are unchanged. 

From now on we work modulo 2, i.e. we apply the natural homomorphism E[L+] + 

zz[L+] to M. It suffices to show that the resulting matrix is nonsingular. In order 

to avoid excessive notation we use X, Y,Z to denote their images under this and all 

subsequent specializations. 

First we compute the rank of Y. The linking conditions above show that the rows 

may be indexed by subsets A of N of size 2a + 1. The rows corresponding to a given 

A have nonzero entries only in columns indexed by (B, {i,j}) where A&l = N and 

i, j E A. Thus the set of rows indexed by a given A,J is independent of all rows indexed 

by all other subsets A since their nonzero entries occur in disjoint sets of columns. 

It therefore suffices to compute the rank of each submatrix Y, formed by all rows 

corresponding to a given A. 

Fix such a subset A. Now for a given row (A\{i},i), there are two possibilities. 

If i is not the first element of A then there is a nonzero entry in column (B, {k, 1)) 

if and only if i = I, so there is precisely one nonzero entry in this row. If i is the 

first element of A then there are nonzero entries in all columns (B, {i, I}). Thus, by 

reordering columns we can bring Y, to the form 

1 0 ..’ 0 0 0 ... 0 

0 1 ... 0 0 0 ... 0 

. . . . . . . . . . . . . . . . . . . . . 

0 0 ‘.. 1 0 0 ... 0 

1 1 ... 1 0 0 ... 0 

Adding all rows except the last to the last row we convert Y, to 

I 0 ( ) 0 0 . 

It follows that the rank of Y, is equal to /A[ - 1 =2a and hence that the rank of Y 

equals (,fy J(2a). 
In fact the row operations above convert A4 to the form 
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Here R is the (,a’; ,) x (,,‘T ,)(2b + 1) matrix consisting of all rows (A\{i},i) with i 

the first element of A. Appropriate column operations then yield 

Now the rank of Z is (zfrsf 1 )(2b) by the same computation as for Y. In this case the 

analogous column operations followed by row operations convert M to 

Here R’ is a (Jy i) x ($7 i) matrix which is therefore square since 2a + 1 + 2b + 

1 = 2m. Its rows are indexed by subsets A of N of size 2a + 1 and its columns by 

subsets B of N of the complementary size 2b + 1. 

It remains to compute the rank of R’, and first we need to compute the entries 

of Ii’. The entry RLB with row index A and column index B is in the row indexed 

by (A\{&},i,) d 1 an co umn indexed by (B\{jl},jl) where il,jl are respectively the 

first elements of A and B. It can be computed by applying the above row and column 

operations to the submatrix SAB formed by all the row indices (A\{i},i) and column 

indices (B\{j},j). The entry RiB is in fact the sum of all nonzero entries in SAB. We 

now compute this submatrix SAB. 

Now (A\{i},i) links to (B\{j},j) if and only if AnB= {i} or AnB= {j}, the two 

possibilities being exclusive. Thus if IA n BI # 1 then SAB = 0 and so RLB = 0. 

On the other hand, if IA n BI = 1, let c( E A n B. Then the linking conditions show that 

(A\(i), i> and (B\{j],j> are linked if and only if precisely one of i and j equals c(, 

and the corresponding entry in Ma& is &v~~~\I~JJI where p is the one of i and j not 

equal to cr. Thus R& has the form XAAB = cB EAAB VAAB\{b}aP. 

In fact, the distinct variables XAAB are algebraically independent over K. To see this, 

note that since the u,ai are all algebraically independent it suffices to show that the set 

AAB is determined by any one of the pairs (AAB\{/?}, j?), and this is obvious. 

The conditions of Lemma 1 apply with a slight change in notation and the result 

follows. 0 

3.3.2. n odd 

Case (l)(i) of Proposition 1 applies since dim S-i = n <n(n + I)/2 = dim S-2, and 

so Bell’s criterion is not satisfied here. Here the zero pattern of the matrix was sufficient 

to make it singular. As noted in [l], the same is true of the classical algebras b(n). 

Since S(3) % b(3) perhaps this is not surprising. 
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3.4. H(n) and fi(n) 

It is known that the multiplication in H satisfies 

where {f, g} = Ci ai(f)ai(g). Note that this differs slightly from the notation in [2], 

and that the exact multiplication formula is not needed for our purposes. 

Recall the notation XI = D,, . It follows from (1) above that i)i(vr)ai(uJ) = 0 unless 

I n J = {i}, whence 

br,Ql = 
i 

*x,~J, if lInJl= 1, 
(9) 

0, otherwise, 

where A denotes the symmetric difference (Boolean sum). Note that this implies that 

for a given A,Z C N, the Eq. [x~.xJ] = *xA has at most one solution for J. Furthermore, 

this solution exists precisely when I $Z A and A $ I. 

3.4.1. n even 

Theorem 6. Let n > 4 be an even integer. Then H(n) and H(n) satisfy Bell’s criterion. 

Proof. Since [fi, fi] = H = [H, H], it follows that the product matrices for both H and 

fi may be assumed to be the same. Case (l)(i) of Proposition 1 applies since the 

highest degree occurring in H(n) is n - 3 and 

dimH,.= (r:2) = (s12) =dimH, if r+s=n -4. 

Fix such a reverse diagonal block H,,,Y. The conditions of Lemma 1 are satisfied, 

with the same notation, and the result follows. 0 

3.4.2. M odd 

This case reduces rather easily to the previous one. 

Theorem 7. Let n > 5 be odd. Then H(n) and H(n) satisfy Bell’s criterion. 

Proof. Let M,M be the product matrices for H(n),H(n), respectively. The top degree 

n - 2 occurring in H(n) is odd, so that G is obtained from M by adding another row 

and column. Since this procedure either leaves the rank unchanged or increases the 

rank by 1, it suffices to show that fi is nonsingular. 

We decompose G into four blocks as follows. Group the rows indexed by those I 
for which n EZ together and follow them by the rows for which n $1. Do the same 

for the columns. This gives an obvious 2 x 2 block structure. Make the specialization 
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which sets all even XI with n E I to zero. Then M specializes to a matrix of the 

form 

X 

0 

It suffices 

Now Y 

0 ) Y . 

to show that X and Y are nonsingular. 

has entries which are the pairwise products of the xI with I C { 1,. . . , n - 1) 

and hence is just a product matrix for H(n - 1). Thus Y is nonsingular by Theorem 6. 

Choose I with n E I. Since I $ N\(n) there is precisely one J with n E J for which 

bz~~Jl= ~-%\{n}. Thus in X every row and column has precisely one occurrence 

of %Q\{~), so specializing to zero all variables except this one yields a nonsingular 

monomial matrix. 0 

4. Comments 

The author has written and used Maple code which generates the product matrices 

for the Cartan type algebras. It can be accessed at http: //www . math. auckland. ac . 
nz/~wilson/Research/bellcrit/bellcrit.html. 

A natural question is: for the simple Lie superalgebras which do not satisfy Bell’s cri- 

terion, which have (semi)prime enveloping algebras? It was shown in [3] that U(b(n)) 

is not semiprime but it has a unique minimal prime ideal. A similar argument (see 

[7]) shows that U(S(n)) is not semiprime. However, the case of W(n) for odd n > 5 

seems much harder. 

The following is a list of open questions related to the the subject of this paper: 

l If U(L) is prime, and L is finite-dimensional, must L satisfy Bell’s criterion? 

l Is U( W(n)) prime for odd n > 5? 

l Is U(L) graded prime if and only if it is prime? 

l Is U(L) prime if and only if it is semiprime? 

l If L is finite-dimensional, does U(L) always have a unique minimal prime ideal? 

l Does U(S(n)) have a unique minimal prime ideal? 
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